Các ký hiệu nhập toán học tập được dùng Lúc tiến hành những phép tắc toán không giống nhau. Việc xem thêm những đại lượng Toán học tập trở thành đơn giản và dễ dàng rộng lớn khi sử dụng ký hiệu toán học tập. Trên thực tiễn, định nghĩa toán học tập dựa vào trọn vẹn nhập những số lượng và ký hiệu. Chính nên là, việc nắm vững những ký hiệu toán học tập trở thành vô nằm trong cần thiết với học viên.
1. Các ký hiệu toán học tập cơ bản
Bạn đang xem: cac ki hieu toan hoc cap 2
Các ký hiệu nhập toán học tập cơ phiên bản hùn loài người thao tác một cơ hội lý thuyết với những định nghĩa toán học tập. Chúng tớ ko thể thực hiện toán nếu như không tồn tại những ký hiệu. Các tín hiệu và ký hiệu toán học tập đó là thay mặt đại diện của độ quý hiếm. Những tâm trí toán học tập được thể hiện nay bằng phương pháp dùng những ký hiệu. Nhờ trợ hùn của những ký hiệu, một trong những định nghĩa và ý tưởng phát minh toán học tập chắc chắn được lý giải rõ nét rộng lớn. Dưới đấy là list những ký hiệu toán học tập cơ phiên bản thông thường được dùng.
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
= | dấu bằng | bình đẳng | 3 = 1 + 2 3 vày 1 + 2 |
≠ | không vết bằng | bất bình đẳng | 3 ≠ 4 3 ko vày 4 |
≈ | khoảng chừng vày nhau | xấp xỉ | sin (0,01) ≈ 0,01, a ≈ b tức thị a xấp xỉ vày bb |
/
|
bất đồng đẳng nghiêm ngặt ngặt | lớn hơn | 4/ 3 lớn rộng lớn 3 |
< | bất đồng đẳng nghiêm ngặt ngặt | nhỏ hơn | 3 < 4 3 nhỏ rộng lớn 4 |
≥ | bất bình đẳng | lớn rộng lớn hoặc bằng | 4 ≥ 3, a ≥ b là kí hiệu mang đến a to hơn hoặc vày b |
≤ | bất bình đẳng | nhỏ rộng lớn hoặc bằng | 3 ≤ 4, a ≤ b tức thị a nhỏ rộng lớn hoặc vày b |
() |
dấu ngoặc đơn
|
tính biểu thức phía bên trong đầu tiên | 2 × (4 + 6) = 20 |
[] |
dấu ngoặc
|
tính biểu thức phía bên trong đầu tiên | [(8 + 2) × (1 + 1)] = 20 |
+ | dấu cộng | thêm vào | 1 + 3 = 4 |
- | dấu trừ |
phép trừ
|
4 - 1 = 3 |
± | cộng - trừ | cả phép tắc nằm trong và trừ | 3 ± 1 = 1 hoặc 2 |
± | trừ - cộng | cả phép tắc trừ và cộng | 3 ∓ 2 = 1 hoặc 5 |
* | dấu hoa thị | phép nhân | 2 * 5 = 10 |
× | dấu thời gian | phép nhân | 2 × 4 = 8 |
. | dấu chấm chân | phép nhân | 3 ⋅ 4 = 12 |
÷ | dấu hiệu phân chia | sự phân chia | 4 ÷ 2 = 2 |
/ |
dấu gạch ốp chéo
|
sự phân chia | 4/2 = 2 |
- | đường chân trời | chia / phân số | $\frac{6}{3}$ = 2 |
mod | modulo | tính toán phần còn dư | 9 mod 2 = 1 |
. | giai đoạn = Stage | dấu thập phân | 3,56 = 3 + 56/100 |
$a^{b}$ | quyền lực | số mũ | $3^{3}$ = 9 |
a ^ b | dấu mũ | số mũ | 3 ^ 3 = 9 |
√ a | căn bậc hai | √ a ⋅ √ a = a | √ 4 = ± 2 |
$\sqrt[3]{a}$ | gốc hình khối | $\sqrt[3]{f}$ ⋅ $\sqrt[3]{f}$ ⋅ $\sqrt[3]{f}$ = f | $\sqrt[3]{27}$ = 3 |
$\sqrt[4]{a}$ | gốc loại tư | $\sqrt[4]{g}$ ⋅ $\sqrt[4]{g}$ ⋅ $\sqrt[4]{g}$ ⋅ $\sqrt[4]{g}$ = g |
$\sqrt[4]{81}$ = ± 3
|
$\sqrt[n]{a}$ | gốc loại n (gốc) | với n = 3, $\sqrt[n]{27} = 3$ | |
% | phần trăm | 1% = 1/100 | 10% × trăng tròn = 2 |
‰ | phần nghìn | 1 ‰ = 1/1000 = 0,1% | 10 ‰ × trăng tròn = 0,2 |
ppm | mỗi triệu | 1ppm = 1/1000000 | 10ppm × trăng tròn = 0,0002 |
ppb | mỗi tỷ | 1ppb = 1/1000000000 | 10ppb × trăng tròn = 2 × $10^{-7}$ |
ppt | mỗi ngàn tỷ | 1ppt = $10^{-12}$ | 10ppt × trăng tròn = 2 × $10^{-10}$ |
2. Các ký hiệu số nhập toán học
Tên | Tây Ả Rập | Roman | Đông Ả Rập | Do Thái |
không | 0 | ٠ | ||
một | 1 | I | ١ | א |
hai | 2 | II | ٢ | ב |
ba | 3 | III | ٣ | ג |
bốn | 4 | IV | ٤ | ד |
năm | 5 | V | ٥ | ה |
sáu | 6 | VI | ٦ | ו |
bảy | 7 | VII | ٧ | ז |
tám | 8 | VIII | ٨ | ח |
chín | 9 | IX | ٩ | ט |
mười | 10 | X | ١٠ | י |
mười một | 11 | XI | ١١ | יא |
mười hai | 12 | XII | ١٢ | יב |
mười ba | 13 | XIII | ١٣ | יג |
mười bốn | 14 | XIV | ١٤ | יד |
mười lăm | 15 | XV | ١٥ | טו |
mười sáu | 16 | XVI | ١٦ | טז |
mười bảy | 17 | XVII | ١٧ | יז |
mười tám | 18 | XVIII | ١٨ | יח |
mười chín | 19 | XIX | ١٩ | יט |
hai mươi | 20 | XX | ٢٠ | כ |
ba mươi | 30 | XXX | ٣٠ | ל |
bốn mươi | 40 | XL | ٤٠ | מ |
năm mươi | 50 | L | ٥٠ | נ |
sáu mươi | 60 | LX | ٦٠ | ס |
bảy mươi | 70 | LXX | ٧٠ | ע |
tám mươi | 80 | LXXX | ٨٠ | פ |
chín mươi | 90 | XC | ٩٠ | צ |
một trăm | 100 | C | ١٠٠ | ק |
>>>Nắm hoàn hảo 9+ thi đua chất lượng tốt nghiệp trung học phổ thông một cơ hội đơn giản và dễ dàng nằm trong trong suốt lộ trình ôn được cá thể hóa phù phù hợp với phiên bản thân<<<
3. Ký hiệu đại số
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
x | biến x | giá trị ko xác lập cần thiết tìm | 3x = 6 thì x = 2 |
≡
|
tương đương | giống hệt | |
≜ | bằng nhau theo gót tấp tểnh nghĩa | bằng nhau theo gót tấp tểnh nghĩa | |
: = | bằng nhau theo gót tấp tểnh nghĩa | bằng nhau theo gót tấp tểnh nghĩa | |
~ | khoảng chừng vày nhau | xấp xỉ yếu | 2,5 ~ 33 |
≈ | khoảng chừng vày nhau | xấp xỉ | sin (0,01) ≈ 0,01 |
∝ | tỷ lệ với | tỷ lệ với | b ∝ a Lúc b = ka, k hằng số |
∞ | vô cực | vô cực | |
≪ | ít rộng lớn thật nhiều ví với | ít rộng lớn thật nhiều ví với | 1 ≪ 1000000000 |
≫ | lớn rộng lớn nhiều | lớn rộng lớn nhiều | 1000000000 ≫ 1 |
() | dấu ngoặc đơn | tính toán biểu thức phía nhập trước tiên | 2 * (4 + 5) = 18 |
[] | dấu ngoặc | tính toán biểu thức phía nhập trước tiên | [(1 + 0,5) * (1 + 3)] = 6 |
{} | dấu ngoặc nhọn | thiết lập | |
⌊ x ⌋ | làm tròn xoe số nhập ngoặc trở nên số vẹn toàn thấp hơn | làm tròn xoe số nhập ngoặc trở nên số vẹn toàn thấp hơn | ⌊4,3⌋ = 4 |
⌈ x ⌉ | làm tròn xoe số nhập ngoặc trở nên số vẹn toàn rộng lớn hơn | làm tròn xoe số nhập ngoặc trở nên số vẹn toàn rộng lớn hơn | ⌈4,3⌉ = 5 |
x ! | giai thừa | giai thừa | 4! = 1.2.3.4 |
| x | | giá trị tuyệt đối | giá trị tuyệt đối | | -3 | = 3 |
f ( x ) | hàm của x | các độ quý hiếm của x ánh xạ trở nên f (x) | f ( x ) = 2 x +4 |
( f ∘ g ) | thành phần chức năng | ( h ∘ i ) ( x ) = h ( i ( x )) | h ( x ) = 5 x , i ( x ) = x -3 ⇒ ( h ∘ i ) ( x ) = 5 ( x -3) |
( a , b ) | khoảng thời hạn mở | ( a , b ) = { hắn | a < hắn < b } | c ∈ (3,7) |
[ a , b ] | khoảng thời hạn đóng | [ a , b ] = { j | a ≤ j ≤ b } | j ∈ [3,7] |
∆ | thay thay đổi / không giống biệt | thay thay đổi / không giống biệt | ∆ t = $t_{x+1}$ - $t_{x}$ |
∆ | Δ = $b^{2}$ - 4 ac | ||
∑ | sigma | tổng - tổng của toàn cỗ những độ quý hiếm nhập phạm vi của chuỗi |
∑ $x_{i}$ = $x_{1}$ + $x_{2}$ + ... + $x_{n-1}$ + $x_{n}$
|
∑∑ | sigma |
tổng kép
|
$\sum_{j=1}^{3}$ $\sum_{i=1}^{9}$ $x_{i,j}$ = $\sum_{i=1}^{9}$ $x_{i,1}$ + $\sum_{i=1}^{8}$ $x_{i,3}$ |
∏ | số pi vốn | sản phẩm - thành phầm của toàn cỗ những độ quý hiếm nhập phạm vi | ∏ $x_{i}$ = $x_{1}$ ∙ $x_{2}$ ∙ ... ∙ $x_{n-1}$ ∙ $x_{n}$ |
e | hằng số/ số Euler | e = 2,718281 ... | e = lim $(1 + 1 / x)^{x}$ , nhập cơ x → ∞ |
γ | hằng số | γ = 0,5772156649 ... | |
φ | Tỉ lệ vàng | tỷ lệ ko đổi | |
π | hằng số pi | π = 3,1415926 ... là tỷ số thân thiết chu vi hình tròn trụ và 2 lần bán kính của hình tròn trụ đó |
d⋅π = 2⋅ π ⋅ r =c |
4. Các ký hiệu phần trăm và thống kê
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
P ( A ) | hàm xác suất | xác suất của một sự khiếu nại A | P ( A ) = 0,3 |
P ( A ⋂ B ) | xác suất những sự khiếu nại kí thác nhau |
xác suất của những sự khiếu nại A và sự khiếu nại B
|
|
P ( A ⋃ B )
|
xác suất kết hợp | xác suất của những sự khiếu nại A hoặc sự khiếu nại B | |
P ( A | B ) | hàm phần trăm đem điều kiện | xác suất của việc khiếu nại A mang đến trước việc khiếu nại đang được xẩy ra B | |
f ( x ) |
hàm tỷ lệ phần trăm (pdf)
|
Q ( a ≤ x ≤ b ) = ∫ f ( x ) dx | f ( x ) = 2x+3 |
F ( x ) | hàm phân phối (cdf) | ||
μ | dân số trung bình |
giá trị số lượng dân sinh trung bình
|
μ = 12 |
E ( X ) | kỳ vọng | giá trị kỳ vọng của X (X là thay đổi ngẫu nhiên) | E ( X ) = 10 |
E ( X | Y )
|
giá trị kỳ vọng đem điều kiện | giá trị kỳ vọng của X mang đến trước Y | E ( X | Y = 33 ) = 90 |
var ( X ) | phương sai | phương sai của thay đổi tình cờ X | var ( X ) = 3 |
$\sigma ^{2}$ | phương sai | phương sai của những giá chỉ trị | $\sigma ^{2}$ = 9 |
std ( X ) | độ chéo chuẩn | giá trị phỏng chéo chuẩn chỉnh của X (X là thay đổi ngẫu nhiên) | std ( X ) = 3 |
$\sigma _{X}$ | độ chéo chuẩn | độ chéo chuẩn chỉnh của thay đổi X ngẫu nhiên | $\sigma _{x}$ = 4 |
trung bình | giá trị khoảng của thay đổi X (ngẫu nhiên) | ||
cov ( X , Y ) | hiệp phương sai | giá trị hiệp phương sai của những thay đổi tình cờ X và Y | cov ( X, Y ) = 6 |
corr ( X , Y ) | tương quan | sự đối sánh tương quan của những thay đổi tình cờ X và Y | corr ( X, Y ) = 0,7 |
$\rho _{X,Y}$ | tương quan | sự đối sánh tương quan của những thay đổi tình cờ X và Y | $\rho _{X,Y}$ = 0,8 |
∑ |
tổng
|
tổng của toàn cỗ những độ quý hiếm nhập phạm vi của chuỗi | $\sum_{i=1}^{3} x_{i} = x_{1} + x_{2} + x_{3}$ |
∑∑ |
tổng kép
|
tổng kết kép | $\sum_{j=1}^{3} \sum_{i=1}^{9} x_{i,j} = \sum_{i=1}^{9} x_{i,1} + \sum_{i=1}^{8} x_{i,3}$ |
Mo | mốt | giá trị xuất hiện nay thông thường xuyên nhất | |
MR | tầm trung | MR = ( $x_{1} + x_{2}$ ) / 2 nhập cơ $x_{1}$là max, $x_{2}$ là min | |
Md | trung bình mẫu | ||
$Q_{1}$ | phần tư đầu tiên | ||
$Q_{2}$ | phần tư loại nhị / trung vị | ||
$Q_{3}$ | phần tư loại phụ thân / phần tư trên | ||
x |
trung bình mẫu Xem thêm: cach lam goc cay mai gia
|
giá trị trung bình | |
$s^{2}$
|
giá trị phương sai mẫu | phương sai mẫu | $s^{2}$ = 8 |
s | độ chéo chuẩn chỉnh mẫu | độ chéo chuẩn | s = 2 |
$z_{x}$ | giá trị điểm chuẩn | $z_{a} = (a - \bar{a}) / s_{a}$ | |
X ~ | phân phối | phân phối của thay đổi tình cờ X | X ~ N (0,2) |
N ( μ , $\sigma ^{2}$ ) | phân phối bình thường | phân phối gaussian | X ~ N (0,2) |
Ư ( a , b ) | phân tía đồng đều | xác suất đều bằng nhau nhập phạm vi x, hắn | X ~ U (0,2) |
exp (λ) | phân phối theo gót cấp cho số nhân | f ( hắn ) = $\lambda e^{-\lambda y}$ , nhập cơ hắn ≥0 | |
gamma ( c , λ) | phân phối gamma | f ( x ) = $\lambda$ $cx^{c-1} e^{-\lambda x} /$ Γ ( c ) với x ≥0 | |
χ 2 ( h ) | phân phối chi bình phương | f ( x ) = $x^{h/2-1} e^{-x/2} / (2^{h/2} \Gamma (h/2))$ | |
F ( k 1 , k 2 ) | phân phối F | ||
Bin ( n , p ) | phân phối nhị thức |
f ( k ) =${(1-p)^{nk}}_{n}C_{k} p^{k}$
|
|
Poisson (λ) | phân phối Poisson | f ( k ) = $(\lambda ^{k}e^{-\lambda }) / k!$ | |
Geom ( p ) | phân tía hình học | ||
Bern ( p ) | Phân phối Bernoulli |
5. Ký hiệu giải tích và phân tích
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
lim | giới hạn | giới hạn của một hàm | $\lim_{x\rightarrow x_{0}} f(x) = 1 $ |
ε | epsilon | số rất rất nhỏ, sát vày không | ε → 0 |
e | hằng số |
e = 2,7182818 ...
|
e = $\lim_{}(1+1/x)^{x}$ , nhập cơ x → ∞ |
y ' | đạo hàm | đạo hàm - Lagrange | ($x^{9}$) '= 9 $x^{8}$ |
y '' | đạo hàm loại hai | đạo hàm của đạo hàm | 72 $x^{7}$ = ( $x^{9}$) '' |
$y^{n}$
|
đạo hàm loại n | n phen đạo hàm | 32 = (4 $x^{3}$ )$^{(3)}$ |
$\frac{dy}{dx}$ | dẫn xuất | dẫn xuất - ký hiệu Leibniz | d (4 $x^{3}$ ) / dx = 16 $x^{2}$ |
$\frac{d^{2}y}{dx^{2}}$ | dẫn xuất loại hai | đạo hàm của đạo hàm | $d^{2}$ (4 $x^{3}$ ) / d$x^{2}$ = 32 x |
$\frac{d^{n}y}{dx^{n}}$ | dẫn xuất loại n | n phen dẫn xuất | |
đạo hàm thời gian | ( ký hiệu Newton ) đạo hàm theo gót thời gian | ||
đạo hàm thời hạn loại hai | đạo hàm của đạo hàm | ||
$D_{x}y$ | dẫn xuất | dẫn xuất - ký hiệu Euler | |
${D_{x}}^{2}y$ | Dẫn xuất loại hai | đạo hàm của đạo hàm | |
đạo hàm riêng | $\partial (a^{2} + b^{2})/\partial a= 2a$ | ||
∫ | Tích phân | đối lập với dẫn xuất | ∫ f (x) dx = 1 |
∫∫ | tích phân kép | ∫∫ f (x, y) dxdy | |
∫∫∫ | tích phân ba | ∫∫∫ f (x, hắn, z) dxdydz | |
∮ | tích phân đường | ||
∯ | tích phân mặt phẳng đóng | ||
∰ | tích phân lượng đóng | ||
[ a , b ] |
khoảng thời hạn đóng
|
[ hắn , z ] = { k | hắn ≤ k ≤ z } | |
( a , b ) | khoảng thời hạn mở |
( i , j ) = {w | i< w < j }
|
|
i | đơn vị tưởng tượng | i ≡ √ -1 | z = 2,5 + 2 i |
z* | liên phù hợp phức | z = a + ci → z * = a - ci | z * = 2,5 - 2 i |
Re ( z ) | phần thực của một trong những phức | z = a + ci → Re ( z ) = a | Re (2,5- 2 i ) = 2,5 |
Im ( z ) | phần ảo của một trong những phức | z = a + qi → Im ( z ) = q | Im (3,5 - 3i ) = - 3 |
| z | | giá trị tuyệt đối | | z | = | a + li | = √ $(a^{2} + l^{2})$ | |
arg ( z ) | đối số của một trong những phức | chính là góc của nửa đường kính (trong mặt mày phẳng lặng phức) | |
∇ | nabla / del | toán tử gradient / phân kỳ | |
vector | |||
đơn vị véc tơ | |||
x * y | tích chập | y ( j ) = x ( j ) * h ( j ) | |
biến thay đổi laplace |
F ( hắn ) = { f ( o )}
|
||
biến thay đổi Fourier | X (ω) = { f ( p)} | ||
δ | hàm delta | ||
∞ | vô cực | vô cực |
>> Xem thêm: Lý thuyết số phức và cơ hội giải những dạng bài xích tập dượt cơ bản
Đăng ký tức thì nhằm nhận bí mật tóm hoàn hảo kỹ năng và kiến thức và cách thức giải từng dạng bài xích tập dượt Toán thi đua trung học phổ thông Quốc Gia phỏng quyền của VUIHOC
6. Các ký hiệu nhập toán hình học
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
∠ | góc | tạo vày nhị tia | ∠ABC = 60 ° |
góc đo được
|
|||
góc hình cầu | |||
∟ | góc vuông | bằng 90 ° | α = 90 ° |
° | độ | 1 vòng = 360 ° | α = 60 ° |
deg | độ | 1 vòng = 360deg | α = 60deg |
' | nguyên tố | arcminute, 1 ° = 60 ' | α = 60 ° 59 ′ |
" |
số yếu tắc kép
|
arcsecond, 1 ′ = 60 ″ | α = 60 ° 59′59 ″ |
hàng | dòng vô tận | ||
AB | đoạn thẳng | từ điểm A tới điểm B | |
tia | bắt đầu kể từ điểm A | ||
cung | cung kể từ điểm A tới điểm B | ||
⊥ | vuông góc | đường vuông góc (tạo góc 90 °) | AC ⊥ AD |
∥ | song tuy nhiên, tương đồng | song song | AB ∥ DE |
~ | đồng dạng | hình dạng như thể nhau, hoàn toàn có thể ko nằm trong kích thước | ∆ABC ~ ∆XYZ |
Δ | hình tam giác | Hình tam giác | ΔABC≅ ΔBCD |
| x - hắn | | khoảng cách | khoảng cơ hội thân thiết điểm x & điểm y | | x - hắn | = 5 |
π | số pi | π = 3,1415926 ... | π ⋅ d = 2. r.π = c |
rad | radian | đơn vị góc radian | 360 ° = 2π rad |
c | radian | đơn vị góc radian | 360 ° = 2π c |
grad | gons | cấp đơn vị chức năng đo góc | 360 ° = 400 grad |
g | gons | cấp đơn vị chức năng đo góc | 360 ° = 400g |
>> Xem thêm thắt bài xích viết: Tổng phù hợp công thức toán hình 12 tương đối đầy đủ dễ dàng ghi nhớ nhất
7. Biểu tượng Hy Lạp
Chữ ghi chép hoa | Chữ cái thường | Tên vần âm Hy Lạp | Tiếng Anh tương đương | Tên chữ cái Phát âm |
A | α | Alpha | a | al-fa |
B | β | Beta | b | be-ta |
Γ | γ | Gamma | g | ga-ma |
Δ | δ | Delta | d | del-ta |
E | ε | Epsilon | đ | ep-si-lon |
Z | ζ | Zeta | z | ze-ta |
H | η | Eta | h | eh-ta |
Θ | θ | Theta | th | te-ta |
I | ι | Lota | tôi | io-ta |
K | κ | Kappa | k | ka-pa |
Λ | λ | Lambda | l | lam-da |
M | μ | Mu | m | m-yoo |
N | ν | Nu | n | noo |
Ξ | ξ | Xi | x | x-ee |
O | o | Omicron | o | o-mee-c-ron |
Π | π | Pi | p | pa-yee |
Ρ | ρ | Rho | r | hàng |
Σ | σ | Sigma | s | sig-ma |
Τ | τ | Tau | t | ta-oo |
Υ | υ | Upsilon | u | oo-psi-lon |
Φ | φ | Phi | ph | học phí |
Χ | χ | Chi | ch |
kh-ee
|
Ψ | ψ | Psi | ps | p-see |
Ω | ω | Omega | o | o-me-ga |
8. Số La Mã
Số | Số la mã |
0 | |
1 | I |
2 | II |
3 | III |
4 | IV |
5 | V |
6 | VI |
7 | VII |
8 | VIII |
9 | IX |
10 | X |
11 | XI |
12 | XII |
13 | XIII |
14 | XIV |
15 | XV |
16 | XVI |
17 | XVII |
18 | XVIII |
19 | XIX |
20 | XX |
30 | XXX |
40 | XL |
50 | L |
60 | LX |
70 | LXX |
80 | LXXX |
90 | XC |
100 | C |
200 | CC |
300 | CCC |
400 | CD |
500 | D |
600 |
DC
|
700 | DCC |
800 | DCCC |
900 | CM |
1000 | M |
5000 | V |
10000 | X |
50000 | L |
100000 | C |
500000 | D |
1000000 | M |
9. Biểu tượng logic
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
⋅ | và | và | x . y |
^ | dấu nón / vết mũ | và | x ^ y |
& | dấu và | và |
x & y
|
+ | thêm | hoặc | x + y |
∨ | dấu nón hòn đảo ngược | hoặc | x ∨ y |
| | đường trực tiếp đứng | hoặc | x | y |
x ' | trích dẫn duy nhất | không - phủ định | x ' |
$\bar{x}$ | quầy bar | không - phủ định | $\bar{x} $ |
¬ | không | không - phủ định | ¬ x |
! | dấu chấm than | không - phủ định | ! x |
⊕ | khoanh tròn xoe vết nằm trong / oplus | độc quyền hoặc - xor | x ⊕ y |
~ | dấu ngã | phủ định | ~ x |
⇒ | ngụ ý | ||
⇔ | tương đương | khi và chỉ Lúc (iff) | |
↔ | tương đương | khi và chỉ Lúc (iff) | |
∀ | cho vớ cả | ||
∃ | có tồn tại | ||
∄ | không tồn tại | ||
∴ | vì thế | ||
∵ | bởi vì như thế / kể từ |
10. Đặt ký hiệu lý thuyết
Ký hiệu | Tên ký hiệu | Ý nghĩa | Ví dụ |
{} | thiết lập | tập phù hợp những yếu đuối tố | A = {3,5,9,11}, B = {6,9,4,8} |
A ∩ B | giao | các thành phần mặt khác nằm trong nhị hội tụ A và B | A ∩ B = {9} |
A ∪ B | hợp | các đối tượng người sử dụng nằm trong tập dượt A hoặc tập dượt B | A ∪ B = {3,5,9,11,6,4,8} |
A ⊆ B | tập phù hợp con | A là tập dượt con cái của B. Tập A được tiến hành tập dượt B. | {9,14} ⊆ {9,14} |
A ⊂ B | tập phù hợp con cái nghiêm ngặt ngặt | Tập phù hợp A là 1 trong tập dượt con cái của hội tụ B, tuy nhiên A ko vày B. | {9,14} ⊂ {9,14,29} |
A ⊄ B
|
không nên hội tụ con |
Một tập dượt hội tụ ko là tập dượt con cái của tập dượt còn lại
|
{9,66} ⊄ {9,14,29} |
A ⊇ B | tập phù hợp A là 1 trong siêu hội tụ của hội tụ B và hội tụ A bao hàm hội tụ B | {9,14,28} ⊇ {9,14,28} | |
A ⊃ B | A là 1 trong tập dượt siêu của B, tuy vậy tập dượt B ko vày tập dượt A. | {9,14,28} ⊃ {9,14} | |
$2^{A}$ | bộ nguồn | tất cả những tập dượt con cái của A | |
bộ nguồn | tất cả những tập dượt con cái của A | ||
A = B | bình đẳng | Tất cả những thành phần như thể nhau | A = {3,9,14}, B = {3,9,14}, A = B |
$A^{c}$ | bổ sung | tất cả những đối tượng người sử dụng đều ko nằm trong hội tụ A | |
A \ B | bổ sung tương đối | đối tượng thuộc sở hữu tập dượt A tuy vậy ko thuộc sở hữu B | A = {3,9,14}, B = {1,2,3}, A \ B = {9,14} |
A - B | bổ sung tương đối | đối tượng thuộc sở hữu tập dượt A và ko thuộc sở hữu tập dượt B | A = {3,9,14}, B = {1,2,3}, AB = {9,14} |
A ∆ B | sự khác lạ đối xứng |
các đối tượng người sử dụng nằm trong A hoặc B tuy nhiên ko tập dượt kí thác của chúng Xem thêm: ve tranh chu de the gioi khong khoi thuoc
|
A = {3,9,14}, B = {1,2,3}, A ∆ B = {1,2,9,14} |
A ⊖ B | sự khác lạ đối xứng | các đối tượng người sử dụng nằm trong A hoặc B tuy nhiên ko nằm trong phù hợp của chúng | A = {3,9,14}, B = {1,2,3}, A ⊖ B = {1,2,9,14} |
a ∈ A | phần tử của, thuộc về |
A = {3,9,14}, 3 ∈ A | |
x ∉ A | không nên thành phần của | A = {3,9,14}, 1 ∉ A | |
( a , b ) | cặp | bộ thuế tập dượt của 2 yếu đuối tố | |
A × B | tập phù hợp toàn bộ những cặp hoàn toàn có thể được bố trí kể từ A và B | ||
| A | | bản chất | số thành phần của tập dượt A | |
#A | bản chất | số thành phần của tập dượt A | A = {3,9,14}, # A = 3 |
| | thanh dọc | như vậy mà | A = {x | 3 <x <14} |
aleph-null | bộ số đương nhiên vô hạn | ||
aleph-one | số lượng số trật tự kiểm đếm được | ||
Ø | bộ trống | Ø = {} | C = {Ø} |
bộ phổ quát | tập phù hợp toàn bộ những độ quý hiếm đem thể | ||
$\mathbb{N}_{0}$ | bộ số đương nhiên / số vẹn toàn (với số 0) | $\mathbb{N}_{0}$ = {0,1,2,3,4, ...} | 0 ∈ $\mathbb{N}_{0}$ |
$\mathbb{N}_{1}$ | bộ số đương nhiên / số vẹn toàn (không đem số 0) | $\mathbb{N}_{1}$ = {1,2,3,4,5, ...} | 6 ∈ $\mathbb{N}_{1}$ |
bộ số nguyên | = {...- 3, -2, -1,0,1,2,3, ...} | -6 ∈ |
|
bộ số hữu tỉ | 2/6 ∈ |
||
bộ số thực | 6.343434 ∈ |
||
bộ số phức | 6 + 2 i ∈ |
Bình luận