Question
Bạn đang xem: sin 8x cos 8x
Solution
sin8(x)+cos8(x) =(sin4x+cos4x)2−2sin4xcos4x =((sin2x+cos2x)2−2sin2xcos2x)2−2sin4xcos4x =(1−sin22x2)2−sin42x8 =1+sin42x4−sin22x−sin42x8 =1+sin42x8−sin2(2x) Therefore Let sin2(2x)=t t28−t+1532=0 4t2−32t+15=0 ⇒t=32±√1024−2408 ⇒t=32±4√64−158 ⇒t=8±√492 ⇒t=152 or t=12 Now, t=152 is not possible. Xem thêm: dia ly duoc hinh thanh do
=1732
Hence
sin2(2x)ϵ[0,1]
Therefore
sin22x=12
sin(2x)=±1√2
2x=(2n+1)π4
Or
2x=nπ2±π8 ⇒x=nπ4±π8
Similar Questions
The general solution lớn sin10x+cos10x=2916cos42x is
The general solution of tan2x=−cot(x+π3)is(nϵZ)
The general solution of sin2x−2 cosx+14=0 is x=(nϵZ)
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12
Xem thêm: thay kinh do la thay tet
Find the general solutions of 3tan2x−1=0
Bình luận